

Program/Project Description

- The Bioexplorer I Project is the first of a series of dedicated, nanosatellite free-flyer missions for support of Fundamental Biology research applications.
- Bioexplorer I is a technology feasibility demonstration to evaluate the bionanosatellite platform's capabilities to conduct cell and molecular biological research using model organisms, and to evaluate in-situ technologies suitable for future science missions.
- Bioexplorer I will not have the capability to return science payloads, specimens or samples, and will thus acquire, process, and communicate experimental data to ground.
- Technologies to be evaluated include:
 - Bionanosatellite development, Active and passive attitude control and positioning, communications/control,
 - Biofluidics, optics/photonics (microscopy),, automated sample handling and management
 - Reference spacecraft sensors and actuators
 - Data management, and launch ops.

BioExplorer Development Strategy

- 2-3 Flights/year
- 3 payload Classes
 - In situ 1 way (data download, no sample return)
 - In situ + incremental sampling/fixation; return
 - Either/both above, with 1 G control (tether/small centrifuge)
- Focus on Molecular Biology/radiation/Evolution experiments
- Use model organisms, apply molecular bio/genomics/proteomics techniques
 - Yeast
 - Mammalian tissue cells
 - Bacteria
 - C. Elegans
 - Drosophila
 - Avian eggs
- Develop Modular, reconfigurable, in-situ Monitoring and Control technologies
- Explore small satellite programs (NASA/US/Comm'l/Int'l)
 - 10-100Kgm Range with 4size ranges (kgm): [1-10, 10-30, 30-50, 50-100]

BioNano Satellite Overview

Aues Research Genter

- Satellite Bus Subsystems
 - Chassis Assembly
 - Thermal System
 - Power System
 - Communication System
 - Satellite Control and Data Handling System
 - Stabilization System
 - Data Logger System
 - Software
 - External Camera System
 - Interconnects
- Experiment System Components
 - Biology System
 - Experiment Electronics System
 - Video System
 - Experiment Software

Launch Vehicle Overview

Ames Desearch Conter

- Two expendable launch vehicles identified as baseline candidates for the BioExplorer-1 Mission
- BioNano Satellite System accommodates multiple launch platform configurations

Satellite, Launcher, and Multi-Payload Adapter

Technology Drivers for Fundamental Biology Research

- GROW <u>Autonomous</u>, <u>multigenerational Habitats</u>
 In-flight systems and modules will permit growth and nurturing of cells, tissues, and higher organisms
- SENSE <u>in-situ</u> Biosensors & Sample <u>Management</u>

Development of biosensors, DNA chips and automated sample management and handling systems will permit insitu measurement and analysis of biological processes

 OBSERVE - Microscopy and Advanced Imaging Systems

Incorporation of new advances in optical, nanoand information technologies will allow in-situ imaging systems to visualize changes in cell shape and configuration

 ANALYZE - Information Systems and Technologies

Revolutionary developments in bioinformatics, modeling, simulation, and adaptive - autonomous bioanalytical systems will enable rapid conversion of raw data to information/knowledge

FLY - Free Flyer BioNanosatellite Development

Development and flight demonstration of advanced insitu biological technologies and platforms

BioExplorer Missions

The intent of this new activity is to develop, demonstrate and utilize small free-flying orbital spacecraft -"BioExplorers" - to support Principal Investigator-led science missions that have been selected through peer review.

Mission	Payload	Science Goals	Species	Technology Requirements
Bioexplorer 1	Test-bed for: - science - technologies - platform	in-situ growth ratesimaging profiles	-Saccharomyces cerevisiae	 cell culture habitat syringe microfluidics dark field microscopy biosensors fluorescent microscopy?
Bioexplorer 2-3	- Cell biology studies	 bud scar patterns cytoskeletal structure subcellular locations mutant survival life cell cycles radiation effects 	-Saccharomyces cerevisiae - c. elegans - mammalian cells - photosynethetic Plants (euglena)	 flow Cytometry? cell culture habitats advanced imaging: confocal, multi-photon, fluorescent microscopy flow cytometry molecular probes
Bioexplorer 4 - 6	- Genetic/Radiation studies	 gene deletion studies gene expression profiles radiation effects aging studies 	 Saccharomyces Cerevisiae c. elegans mammalian cells Plants 	inflight sample preparationfix/freeze capabilitiesmicroarray analysis

Missions: BioExplorers

Payload Development

- Autonomous, multigenerational habitats
- Advanced in-situ analytical technologies

LEO Free-Flyers

- Technology validation
- Initial multigenerational studies

Arrows denote Initial Bioexplorer-1 emphasis

Space Station/LEO Free-flyers

- Studies of evolution in microgravity
- Payload and technology validation

Bioexplorers: Return Probes

- Small, adaptable-configuration probes
- Microgravity/radiation study, return analysis

Bioexplorers: Free Flyers

- Autonomous, integrated laboratories
- Long-term multigenerational studies

Free-Flyer Satellite Technology Strategy

- Define / Incorporate Free Flyer Science Requirements for the OBPR Enterprise
- Assess the State of Technology Development to Address Science Requirements
- Define, Develop, Validate, and Insert into Free Flyer Missions the Key Technologies needed for OBPR Programs and Research Activities
 - •Implement a phased approach, building incrementally from non-return nanosatellite technology demonstrations to fully operational missions which utilize the full complement of free-flyer platforms, capable of long-duration, beyond low earth orbit deployment, with the possibilities for 1-G controls, advanced orbital maneuvers, and sample return
 - •Provide the capability to transfer technologies developed for free-flyer to ISS and Shuttle, and utilize those platforms for free-flyer technology demonstration/validation
- Engage the Best Talents within NASA, Universities, and Industry in Technology Definition, Development, and Deployment
- Develop Collaborations with other Technology Sponsors and Providers
- Institute a Technology Development Mechanism / Infrastructure to Ensure Success

Free-Flyer in-situ Biological Payload Technology Requirements

- •Miniature, in-situ Biological Sensors, Arrays, and Signal Processors
- •Species-specific Biological Sample Management and Handling Systems
- Programmable, in-situ Biofluidics Modules and Processors
- •Advanced, and Multi-Mode Microscopy, Biophotonics, and Imaging Systems
- •Long-duration Biospecimen Life Support and Cell Culture Systems
- Technologies for in-situ Molecular Biology (Genomics and Proteomics) Research
- Miniaturized, Fluorescent Activated Cell Sorters / Cytometers
- •High-sensitivity, Target-specific BioMolecular Probes, Tags, and Indicators
- Autonomous, Robotic, Biospecimen Freezer Modules (Fast, Snap, and Cryogenic)
- Advanced Information Technology Tools for Data Interpretation and Control

Free-Flyer Satellite Platform Technology Requirements

- •Micro-Electro-Mechanical Systems (MEMS) Space Components
- •Mini-Micro Thrusters/Propulsion/ Attitude Control Systems
- •High Capacity Miniaturized Flight Power Systems
- Radiation Tolerant Instruments, Sensors, and Devices
- •Tethered Satellite Technologies for 1-G Control and Orbital Maneuvering
- Aerocapture, Planetary Landing, and Sample Return Capability
- Autonomous, Modular, in-situ Bioanalytical Laboratory Capability
- Environmental/Process Monitoring and Control Systems
- Smart, Autonomous Command and Data Handling System
- Smart, Reconfigurable, Adaptive Spacecraft Materials and Somponents,

Lunar Fly By & Return

